Early phosphoinositide 3-kinase activity is required for late activation of protein kinase Cepsilon in platelet-derived-growth-factor-stimulated cells: evidence for signalling across a large temporal gap.

早期磷脂酰肌醇 3-激酶活性是血小板衍生生长因子刺激细胞中蛋白激酶 Cepsilon 后期激活所必需的:这是跨越较大时间间隔的信号传导的证据

阅读:11
作者:Balciunaite E, Kazlauskas A
At least two signalling systems have the potential to contribute to the activation of protein kinase C (PKC) family members such as PKCepsilon. One of these is phosphoinositide 3-kinase (PI 3-kinase), whose lipid products activate PKCepsilon in vitro and in living cells. The recent observation that there are multiple waves of PI 3-kinase and PKCepsilon activity within the G(0)-to-S phase interval provides a new opportunity to investigate the relationship between these two signalling enzymes in vivo. We have assessed the relative importance of the early and late waves of PI 3-kinase activity for the corresponding waves of PKCepsilon activity. Blocking the first phase of PI 3-kinase activity inhibited both early and late activation of PKCepsilon. In contrast, the second wave of PI 3-kinase activity was dispensable for late activation of PKCepsilon. These findings suggested that early PI 3-kinase activation induced a stable change in PKCepsilon, which predisposed it to subsequent activation by lipid cofactors. Indeed, partial proteolysis of PKCepsilon indicated that early activation of PI 3-kinase led to a conformation change in PKCepsilon that persisted as the activity of PKCepsilon cycled. We propose a two-step hypothesis for the activation of PKCepsilon in vivo. One step is stable and depends on PI 3-kinase, whereas the other is transient and may depend on the availability of lipid cofactors. Finally, these studies reveal that PI 3-kinase and PKCepsilon are capable of communicating over a relatively long time interval and begin to elucidate the mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。