Recent reports have shown that Ca(2+)/calmodulin (Ca(2+)/CaM) signaling plays a crucial role in angiogenesis. We previously developed a new Ca(2+)/CaM antagonist, HBC (4-{3,5-bis-[2-(4-hydroxy-3-methoxyphenyl)ethyl]-4,5-dihydropyrazol-1-yl}benzoic acid), from a curcumin-based synthetic chemical library. Here, we investigated its anti-angiogenic activity and mode of action. HBC potently inhibited the proliferation of human umbilical vascular endothelial cells with no cytotoxicity. Furthermore, HBC blocked in vitro characteristics of angiogenesis such as tube formation and chemoinvasion, as well as neovascularization of the chorioallantoic membrane of growing chick embryos in vivo. Notably, HBC markedly inhibited expression of hypoxia-inducible factor-1alpha (HIF-1alpha) at the translational level during hypoxia, thereby reducing HIF-1 transcriptional activity and expression of its major target gene, vascular endothelial growth factor. In addition, combination treatment with HBC and various HIF-1 inhibitors, including suberoylanilide hydroxamic acid, rapamycin, and terpestacin, had greater anti-angiogenic activity than treatment with each single agent. Collectively, our findings indicate that HBC is a new anti-angiogenic agent targeting HIF that can be used to explore the biological role of Ca(2+)/CaM in angiogenesis.
A novel Ca2+/calmodulin antagonist HBC inhibits angiogenesis and down-regulates hypoxia-inducible factor.
新型 Ca2+/钙调蛋白拮抗剂 HBC 可抑制血管生成并下调缺氧诱导因子
阅读:5
作者:Jung Hye Jin, Kim Jong Hyeon, Shim Joong Sup, Kwon Ho Jeong
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2010 | 起止号: | 2010 Aug 13; 285(33):25867-74 |
| doi: | 10.1074/jbc.M110.135632 | 研究方向: | 信号转导 |
| 信号通路: | Angiogenesis | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
