Characterization of Extracellular Vesicles from Streptococcus thermophilus 065 and Their Potential to Modulate the Immune Response.

嗜热链球菌 065 细胞外囊泡的特性及其调节免疫反应的潜力

阅读:5
作者:Ortiz Camargo Angela Rocio, van Mastrigt Oscar, Gouw Joost W, Liu Yue, Bongers Roger S, van Bergenhenegouwen Jeroen, Knol Jan, Abee Tjakko, Smid Eddy J
Bacteria can release membrane-derived nanoparticles made of lipid bilayers, so-called extracellular vesicles (EVs), which can carry diverse cargo and are important for microbe-microbe and microbe-host interactions. Here, we studied the production of EVs by Streptococcus thermophilus 065, the protein composition of the EVs, and how the produced EVs impact the immune response in vitro. Cultures of S. thermophilus grown for 6 h at 40 °C in M17 broth with 2% lactose reached high biomass yields and a high level of EVs quantified by lipophilic fluorescent dye staining. Proteome analysis of the isolated EVs revealed a high abundance of membrane-associated binding proteins of ABC transporters, ribosomal proteins, and glycolytic enzymes. In addition, phage proteins were found to be present in the EVs, which suggests a low-level expression of prophage genes during growth most likely supporting the release of EVs without causing cell lysis. The role of prophage activation was confirmed in an experiment with the addition of mitomycin C resulting in the expression of phage proteins including holin and endolysin causing a drop in culture OD and concomitant EV release. Subsequent in vitro immune assays using non-activated and activated human peripheral blood mononuclear cells (PBMCs) showed immune regulation in both cases upon exposure to S. thermophilus EVs and producer cells. This study shows the capacity of S. thermophilus EVs to act as immune modulators and opens the possibility for their use as postbiotics.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。