Background: Injections of osmolytes are promising immunomodulatory treatments for medical benefit, although the rationale and underlying mechanisms are often lacking. The goals of the present study were twofold: (1) to clarify the anti-inflammatory role of the potassium ion and (2) to begin to decouple the effects that ionic strength, ionic species, and osmolarity have on macrophage biology. Materials and Methods: RAW 264.7 murine macrophages were encapsulated in three-dimensional, poly(ethylene glycol) diacrylate hydrogels and activated with interferon-gamma to yield M(IFN). Gene and protein profiles were made of M(IFN) exposed to different hyperosmolar treatments (80âmM potassium gluconate, 80âmM sodium gluconate, and 160âmM sucrose). Results: Relative to M(IFN), all hyperosmolar treatments suppressed expression of pro-inflammatory markers (nitric oxide synthase-2 [NOS-2], tumor necrosis factor-alpha, monocyte chemoattractant protein-1 [MCP-1]) and increased messenger RNA (mRNA) expression of the pleiotropic and angiogenic markers interleukin-6 (IL-6) and vascular endothelial growth factor-A (VEGF), respectively. Ionic osmolytes also demonstrated a greater level of change compared to the nonionic treatments, with mRNA levels of IL-6 the most significantly affected. M(IFN) exposed to K(+) exhibited the lowest levels of NOS-2 and MCP-1, and this ion limited IL-6 release induced by osmolarity. Conclusion: Cumulatively, these data suggest that osmolyte composition, ionic strength, and osmolarity are all parameters that can influence therapeutic outcomes. Future work is necessary to further decouple and mechanistically understand the influence that these biophysical parameters have on cell biology, including their impact on other macrophage functions, intracellular osmolyte composition, and cellular and organellular membrane potentials.
Interferon-Gamma Stimulated Murine Macrophages In Vitro: Impact of Ionic Composition and Osmolarity and Therapeutic Implications.
体外干扰素-γ刺激小鼠巨噬细胞:离子组成和渗透压的影响及治疗意义
阅读:4
作者:Erndt-Marino Joshua, Yeisley Daniel J, Chen Hongyu, Levin Michael, Kaplan David L, Hahn Mariah S
| 期刊: | Bioelectricity | 影响因子: | 1.100 |
| 时间: | 2020 | 起止号: | 2020 Mar 1; 2(1):48-58 |
| doi: | 10.1089/bioe.2019.0032 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
