I-BET151 inhibits expression of RANKL, OPG, MMP3 and MMP9 in ankylosing spondylitis in vivo and in vitro.

I-BET151 在体内和体外均能抑制强直性脊柱炎中 RANKL、OPG、MMP3 和 MMP9 的表达

阅读:10
作者:Fan Jianping, Zhao Jian, Shao Jie, Wei Xianzhao, Zhu Xiaodong, Li Ming
Ankylosing spondylitis (AS) is characterized by osteoclastogenesis and inflammatory bone resorption. The present study aimed to investigate the effect of bromodomain and extra-terminal domain (BET) protein inhibitor I-BET151 on AS process. A total of 38 AS Chinese patients were recruited and a further 38 sex- and age-matched healthy participants were selected as control. The Bath AS Function Index and Bath AS Disease Activity Index were assessed in AS patients and levels of erythrocyte sedimentation rate and C-reactive protein were measured in AS and healthy groups. Serum from AS patients was used to induce MG63 osteoblasts and BET inhibitor I-BET151 at concentrations of 50, 100 and 200 ng/ml used for treatment of the cells. A HLA-B27/β2m transgenic AS Lewis rat model was established and treated with 30 mg/kg I-BET151 for 5 weeks. Levels of receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), matrix metalloproteinase (MMP)3, and MMP9 were measured using ELISA in vivo and additionally detected with western blotting and polymerase chain reaction in vitro. The levels of RANKL, OPG, MMP3 and MMP9 were upregulated in AS serum, AS serum treated MG63 cells and HLA-B27/β2m transgenic AS rats. Conversely, levels of RANKL, OPG, MMP3 and MMP9 were significantly inhibited in cells or animals treated with I-BET151. Overall, the results of the present study demonstrated that BET inhibitor I-BET151 suppresses levels of RANKL, OPG, MMP3 and MMP9 in AS in vivo and in vitro. I-BET151 may exhibit the potential to be used as a therapeutic in the treatment of AS patients.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。