CD19 target-engineered T-cells accumulate at tumor lesions in human B-cell lymphoma xenograft mouse models.

CD19靶向工程化T细胞在人类B细胞淋巴瘤异种移植小鼠模型中的肿瘤病灶处积聚

阅读:7
作者:Tsukahara Tomonori, Ohmine Ken, Yamamoto Chihiro, Uchibori Ryosuke, Ido Hiroyuki, Teruya Takeshi, Urabe Masashi, Mizukami Hiroaki, Kume Akihiro, Nakamura Masataka, Mineno Junichi, Takesako Kazutoh, Riviere Isabelle, Sadelain Michel, Brentjens Renier, Ozawa Keiya
Adoptive T-cell therapy with CD19-specific chimeric antigen receptors (CARs) is promising for treatment of advanced B-cell malignancies. Tumor targeting of CAR-modified T-cells is likely to contribute therapeutic potency; therefore we examined the relationship between the ability of CD19-specific CAR (CD19-CAR)-transduced T-cells to accumulate at CD19(+) tumor lesions, and their ability to provide anti-tumor effects in xenograft mouse models. Normal human peripheral blood lymphocytes, activated with immobilized RetroNectin and anti-CD3 antibodies, were transduced with retroviral vectors that encode CD19-CAR. Expanded CD19-CAR T-cells with a high transgene expression level of about 75% produced IL-2 and IFN-γ in response to CD19, and lysed both Raji and Daudi CD19(+) human B-cell lymphoma cell lines. Furthermore, these cells efficiently accumulated at Raji tumor lesions where they suppressed tumor progression and prolonged survival in tumor-bearing Rag2(-/-)γc(-/-) immunodeficient mice compared to control cohorts. These results show that the ability of CD19-CAR T-cells to home in on tumor lesions is pivotal for their anti-tumor effects in our xenograft models, and therefore may enhance the efficacy of adoptive T-cell therapy for refractory B-cell lymphoma.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。