β-Glucan fragmentation by microfluidization and TNF-α-immunostimulating activity of fragmented β-glucans.

微流控技术对β-葡聚糖进行片段化及其TNF-α免疫刺激活性的研究

阅读:4
作者:Nanta Phawinee, Buachan Paiwan, Pinket Wichchunee, Srinuanchai Wanwisa, Pongwan Pawinee, Sramala Issara, Jarussophon Suwatchai, Prathumpai Wai, Taweechotipatr Malai, Ruktanonchai Uracha Rungsardthong, Kasemwong Kittiwut
Fragmentation of β-glucans secreted by the fungus Ophiocordyceps dipterigena BCC 2073 achieved by microfluidization was investigated. The degree of β-glucan fragmentation was evaluated based on the average number of chain scissions (α). The effects on the α value of experimental variables like solid concentration of the β-glucan suspension, interaction chamber pressure, and number of passes through the microfluidizer were examined. Kinetic studies were conducted using the relationships of the α and suspension viscosity values with the number of passes. Evidence indicated that α increases with the interaction chamber pressure and the number of passes, whereas the solid concentration shows the inverted effect. Kinetic data indicated that the fragmentation rate increases with β-glucan solid concentration and interaction chamber pressure. Furthermore, since β-glucan molecular weight is a key factor determining its biological activity, the effect of β-glucans of different molecular weights produced by fragmentation on tumor necrosis factor (TNF)-α-stimulating activity in THP-1 human macrophage cells was investigated. Evidence suggested that β-glucans have an immunostimulating effect on macrophage function, in the absence of cytotoxic effects. Indeed, β-glucans characterized by a range of molecular weights produced via microfluidization exhibited promise as immunostimulatory agents.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。