Tumour necrosis factor (TNF) is a multi-functional cytokine with profound and diverse effects on physiology and pathology. Identifying the molecular determinants underlying the functions and pathogenic effects of TNF is key to understanding its mechanisms of action and identifying new therapeutic opportunities based on this important molecule. Previously, we showed that some evolutionarily conserved peptides derived from TNF could induce cell death (e.g. apoptosis and/or necrosis), a feature of immune defence mechanisms shared by many vertebrates. In this study, we demonstrated that necrosis-inducing peptide P16 kills human glioblastoma cancer cells and primary human hepatoma or renal cancer cells isolated from patients who had not responded to standard treatments. Importantly, we show that the necrosis-inducing peptide P1516 significantly improves survival by inhibiting tumour metastasis in a 4T1 breast cancer syngeneic graft mouse model. Because the lymphatic system is an important metastatic route in many cancers, we also tested the effect of TNF-derived peptides on monolayers of primary human lymphatic endothelial cells (hDLEC) and found that they increased junctional permeability by inducing cytoskeletal reorganization, gap junction formation and cell death. Transmission electron microscopy imaging evidence, structural analysis and in-vitro liposome leakage experiments strongly suggest that this killing is due to the cytolytic nature of these peptides. P1516 provides another example of a pro-cytotoxic TNF peptide that probably functions as a cryptic necrotic factor released by TNF degradation. Its ability to inhibit tumour metastasis and improve survival may form the basis of a novel approach to cancer therapy.
TNF-derived peptides inhibit tumour growth and metastasis through cytolytic effects on tumour lymphatics.
TNF衍生肽通过对肿瘤淋巴管的细胞溶解作用抑制肿瘤生长和转移
阅读:4
作者:Lu W, Wang Y, Zhang Q, Owen S, Green M, Ni T, Edwards M, Li Y, Zhang L, Harris A, Li J-L, Jackson D G, Jiang S
| 期刊: | Clinical and Experimental Immunology | 影响因子: | 3.800 |
| 时间: | 2019 | 起止号: | 2019 Nov;198(2):198-211 |
| doi: | 10.1111/cei.13340 | 研究方向: | 细胞生物学、肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
