The expression and function of Nod-like receptors in neutrophils.

中性粒细胞中 Nod 样受体的表达和功能

阅读:4
作者:Ekman Anna-Karin, Cardell Lars Olaf
Neutrophils make up an essential part of the innate immune system, and are involved both in the initial responses to pathogens, and in orchestrating later immune responses. Neutrophils recognize pathogens through pattern-recognition receptors (PRRs), which are activated by microbial motifs. The Nod-like receptors (nucleotide-binding domain leucine-rich repeat containing family; NLRs) constitute a recently discovered group of PRRs whose role in the neutrophil immune responses is not yet characterized. The present study aimed to investigate the expression and function of NLRs in neutrophils. Neutrophils were isolated from human peripheral blood, and the presence of nucleotide-binding oligomerization domain 1 (NOD1), NOD2 and NACHT-LRR-PYD-containing protein 3 (NLRP3) was evaluated with flow cytometry and immunohistochemistry. The expression of NOD1, NOD2 and NLRP3 messenger RNA was determined using real-time reverse transcription-polymerase chain reaction. Changes in neutrophil cytokine secretion, phenotype and migration following agonist-induced activation were studied using enzyme-linked immunosorbent assay, flow cytometry and a chemotaxis assay, respectively. No expression of NOD1 was found in isolated neutrophils and stimulation with the NOD1 ligand gamma-d-glutamyl-meso-diaminopimelic acid induced no signs of activity. In contrast, a marked expression of NOD2 and NLRP3 was found. NOD2 activation with MurNAc-l-Ala-d-isoGln (MDP) resulted in interleukin-8 secretion, CD62 ligand down-regulation, CD11b up-regulation and increased migration towards an inflammatory stimulus. NLRP3 activation with alum caused interleukin-1beta secretion and facilitated migration. Altogether, this suggests that NLRs may be a previously unknown pathway for neutrophil activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。