Gut microbial metabolism of dietary flavonoids leads to a diverse array of bioactive products that are closely associated with human health. Combining enzyme promiscuity prediction, metabolomics, and in vitro model systems, we identified a chalcone-synthase-like bacterial polyketide synthase that can initiate the metabolism of naringenin by catalyzing the C-ring cleavage. This was validated using a mutant strain of the model organism Bacillus subtilis (ATCC 23857). Our prediction-validation methodology could be used to systematically characterize the products of gut bacterial flavonoid metabolism and identify the responsible enzymes and species. In vitro experiments with Caco-2 cells revealed that naringenin and its bacterial metabolites differentially engage the aryl hydrocarbon receptor (AhR) and orphan nuclear receptor 4A (NR4A). These results suggest that metabolism by gut bacterial species could directly impact the profile of bioactive flavonoids and influence inflammatory responses in the intestine. These results are significant for understanding gut-microbiota-dependent physiological effects of dietary flavonoids.
A Chalcone Synthase-like Bacterial Protein Catalyzes Heterocyclic C-Ring Cleavage of Naringenin to Alter Bioactivity Against Nuclear Receptors in Colonic Epithelial Cells.
查尔酮合酶样细菌蛋白催化柚皮苷杂环C环裂解,从而改变其对结肠上皮细胞核受体的生物活性
阅读:6
作者:GülÅan Ebru Ece, Nowshad Farrhin, Leigh Meredith Davis, Crott Jimmy Walter, Park Hyejin, Martin Greg, Safe Stephen, Chapkin Robert S, Jayaraman Arul, Lee Kyongbum
| 期刊: | Metabolites | 影响因子: | 3.700 |
| 时间: | 2025 | 起止号: | 2025 Feb 21; 15(3):146 |
| doi: | 10.3390/metabo15030146 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
