The epithelial-to-mesenchymal transition (EMT) genetic program is a molecular convergence point in the life-threatening progression of organ fibrosis and cancer toward organ failure and metastasis, respectively. Here, we employed the EMT process as a functional screen for testing crude natural extracts for accelerated drug development in fibrosis and cancer. Because extra virgin olive oil (EVOO) (i.e., the juice derived from the first cold pressing of the olives without any further refining process) naturally contains high levels of phenolic compounds associated with the health benefits derived from consuming an EVOO-rich Mediterranean diet, we have tested the ability of an EVOO-derived crude phenolic extract to regulate fibrogenic and oncogenic EMT in vitro. High-performance liquid chromatography (HPLC) coupled to time-of-flight (TOF) mass spectrometry assays revealed that the EVOO phenolic extract was mainly composed (â¼70%) of two members of the secoiridoid family of complex polyphenols, namely oleuropein aglycone-the bitter principle of olives-and its derivative decarboxymethyl oleuropein aglycone. EVOO secoiridoids efficiently prevented loss of proteins associated with polarized epithelial phenotype (i.e., E-cadherin) as well as de novo synthesis of proteins associated with mesenchymal migratory morphology of transitioning cells (i.e., vimentin). The ability of EVOO to impede transforming growth factor-β (TGF-β)-induced disintegration of E-cadherin-mediated cell-cell contacts apparently occurred as a consequence of the ability of EVOO phenolics to prevent the upregulation of SMAD4-a critical mediator of TGF-β signaling-and of the SMAD transcriptional cofactor SNAIL2 (Slug)-a well-recognized epithelial repressor. Indeed, EVOO phenolics efficiently prevented crucial TGF-β-induced EMT transcriptional events, including upregulation of SNAI2, TCF4, VIM (Vimentin), FN (fibronectin), and SERPINE1 genes. While awaiting a better mechanistic understanding of how EVOO phenolics molecularly shut down the EMT differentiation process, it seems reasonable to suggest that nontoxic Oleaceae secoiridoids certainly merit to be considered for aging studies and, perhaps, for ulterior design of more pharmacologically active second-generation anti-EMT molecules.
Phenolic secoiridoids in extra virgin olive oil impede fibrogenic and oncogenic epithelial-to-mesenchymal transition: extra virgin olive oil as a source of novel antiaging phytochemicals.
特级初榨橄榄油中的酚类环烯醚萜类化合物可抑制纤维化和致癌的上皮间质转化:特级初榨橄榄油是新型抗衰老植物化学物质的来源
阅读:6
作者:Vazquez-Martin Alejandro, Fernández-Arroyo Salvador, Cufà SÃlvia, Oliveras-Ferraros Cristina, Lozano-Sánchez Jesús, Vellón Luciano, Micol Vicente, Joven Jorge, Segura-Carretero Antonio, Menendez Javier A
| 期刊: | Rejuvenation Research | 影响因子: | 2.600 |
| 时间: | 2012 | 起止号: | 2012 Feb;15(1):3-21 |
| doi: | 10.1089/rej.2011.1203 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
