In this study, we explore the therapeutic feasibility of globotriaosylceramide (Gb3) synthase (A4GALT)-specific siRNA-loaded polyhistidine (pHis)-incorporated lipid nanoparticles (HLNPs) for Fabry disease (FD). HLNPs were developed to deliver siRNAs targeting A4GALT using a microfluidic device, with pHis aiding in endosome escape. The therapy was tested on GLA-knockout human-induced pluripotent-stem-cell-derived endothelial cells (GLA-KO-hiPSC-ECs) and podocytes (GLA-KO-hiPSC-PCs). GLA-KO-hiPSCs-ECs or -PCs, upon differentiation, were treated with A4GALT-siRNA-HLNP. Successful intracellular uptake of A4GALT-siRNA-HLNP was confirmed through fluorescence and electron microscopy in both cell types. A4GALT-siRNA-HLNP treatment confirmed both cell types' stability at 5 μg/mL. Increased Gb3 deposition and zebra body formation were detected in both cell types, but A4GALT-siRNA-HLNP treatment attenuated these FD phenotypes, demonstrating reduced expression of A4GALT through western blot analysis. RNA sequencing analysis revealed that the expression of transcripts associated with FD was restored by A4GALT-siRNA-HLNP treatment in GLA-KO-hiPSCs-ECs, whereas in GLA-KO-hiPSCs-PCs, this effect was relatively less pronounced. Suppression of A4GALT via siRNA/HLNP treatment significantly rescued FD phenotypes especially in EC, presenting a novel therapeutic approach for FD.
A4GALT-targeting siRNA lipid nanoparticles ameliorate Fabry disease phenotype: Greater efficacy in endothelial cells than in podocytes.
靶向 A4GALT 的 siRNA 脂质纳米颗粒可改善法布里病表型:对内皮细胞的疗效比对足细胞的疗效更佳
阅读:5
作者:Shin Yoo Jin, Lee Hanbi, Fang Xianying, Cui Sheng, Lim Sun Woo, Lee Kang In, Lee Jae Young, Kim Hong Lim, Oh Yuna, Li Can, Yang Chul Woo, You Gayeon, Lee Hyeondo, Mok Hyejung, Chung Byung Ha
| 期刊: | Molecular Therapy-Nucleic Acids | 影响因子: | 6.100 |
| 时间: | 2025 | 起止号: | 2025 May 20; 36(2):102573 |
| doi: | 10.1016/j.omtn.2025.102573 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
