Development of a human colorectal carcinoma cell-based platform for studying inducible nitric oxide synthase expression and nitric oxide signaling dynamics.

开发基于人类结直肠癌细胞的平台,用于研究诱导型一氧化氮合酶表达和一氧化氮信号动力学

阅读:5
作者:Chen Xi, Grimm Elizabeth A, Qin Yong
INTRODUCTION: Inducible nitric oxide synthase (iNOS) plays a critical role in inflammatory signaling and tumor immunology, contributing to both pro- and anti-tumor effects depending on the cellular context. While iNOS induction has been linked to immune activation and tumor progression, its expression in cancer cells is highly variable and often inconsistently reported across different tumor models. To address this gap, we developed a well-defined in vitro platform using the human colorectal adenocarcinoma cell line DLD-1 to model stimulus-dependent iNOS expression and nitric oxide (NO) signaling. METHODS: DLD-1 cells were stimulated with a pro-inflammatory cytokine cocktail (lipopolysaccharide [LPS], interleukin-1β [IL-1β], and interferon-γ [IFN-γ]), resulting in marked upregulation of iNOS at both the mRNA and protein levels. iNOS specificity was confirmed using targeted siRNA knockdown. Functional assessment of NO production was performed using the Nitrate/Nitrite Colorimetric Assay Kit and the ENO-30 NOx Analyzer. Induction of iNOS was further associated with elevated levels of reactive nitrogen species (RNS), reactive oxygen species (ROS), and protein nitration, including 3-nitrotyrosine, detected by immunohistochemistry and Western blot. RESULTS: Upon stimulation, DLD-1 cells consistently expressed enzymatically active, full-length human iNOS and produced biologically relevant levels of NO and downstream nitrosative stress markers. Treatment with selective iNOS inhibitors significantly reduced nitrite accumulation, confirming the functional activity of iNOS and the model's applicability for pharmacologic evaluation of NO-modulatory compounds. DISCUSSION: Our findings establish the DLD-1 cell line as a reproducible and well-controlled in vitro system for studying inducible iNOS expression and downstream NO/RNS signaling in human epithelial cancer cells. This platform provides a valuable tool for mechanistic studies, screening of iNOS-targeted agents, and resolving discrepancies in iNOS detection across experimental models in cancer biology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。