IRF1 cooperates with ISGF3 or GAF to form innate immune de novo enhancers in macrophages.

IRF1 与 ISGF3 或 GAF 协同作用,在巨噬细胞中形成先天免疫新生增强子

阅读:5
作者:Chavez Carolina, Lin Kelly, Malveaux Alexis, Gorin Aleksandr, Brizuela Stefanie, Cheng Quen J, Hoffmann Alexander
Macrophages exposed to immune stimuli reprogram their epigenomes to alter their subsequent functions. Exposure to bacterial lipopolysaccharide (LPS) causes widespread nucleosome remodeling and the formation of thousands of de novo enhancers. We dissected the regulatory logic by which the network of interferon regulatory factors (IRFs) induces the opening of chromatin and the formation of de novo enhancers. We found that LPS-activated IRF3 mediated de novo enhancer formation indirectly by activating the type I interferon (IFN)-induced ISGF3. However, ISGF3 was generally needed to collaborate with IRF1, particularly where chromatin was less accessible. At these locations, IRF1 was required for the initial opening of chromatin, with ISGF3 extending accessibility and promoting the deposition of H3K4me1, marking poised enhancers. Because IRF1 expression depends on the transcription factor NF-κB, which is activated in infected but not bystander cells, IRF-regulated enhancers required activation of both the IRF3 and NF-κB branches of the innate immune signaling network. However, type II IFN (IFN-γ), which is typically produced by T cells, may also induce IRF1 expression through the STAT1 homodimer GAF. We showed that, upon IFN-γ stimulation, IRF1 was also responsible for opening inaccessible chromatin sites that could then be exploited by GAF to form de novo enhancers. Together, our results reveal how combinatorial logic gates of IRF1-ISGF3 or IRF1-GAF restrict immune epigenomic memory formation to macrophages exposed to pathogens or IFN-γ-secreting T cells but not bystander macrophages exposed transiently to type I IFN.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。