Enhancing reactivity for bioorthogonal pretargeting by unmasking antibody-conjugated trans-cyclooctenes.

通过揭示抗体偶联的反式环辛烯来增强生物正交预靶向的反应性

阅读:7
作者:Rahim Maha K, Kota Rajesh, Haun Jered B
The bioorthogonal cycloaddition reaction between tetrazine and trans-cyclooctene (TCO) is rapidly growing in use for molecular imaging and cell-based diagnostics. We have surprisingly uncovered that the majority of TCOs conjugated to monoclonal antibodies using standard amine-coupling procedures are nonreactive. We show that antibody-bound TCOs are not inactivated by trans-cis isomerization and that the bulky cycloaddition reaction is not sterically hindered. Instead, TCOs are likely masked by hydrophobic interactions with the antibody. We show that introducing TCO via hydrophilic poly(ethylene glycol) (PEG) linkers can fully preserve reactivity, resulting in >5-fold enhancement in functional density without affecting antibody binding. This is accomplished using a novel dual bioorthogonal approach in which heterobifunctional dibenzylcyclooctyne (DBCO)-PEG-TCO molecules are reacted with azido-antibodies. Improved imaging capabilities are demonstrated for different cancer biomarkers using tetrazine-modified fluorophore and quantum dot probes. We believe that the PEG linkers prevent TCOs from burying within the antibody during conjugation, which could be relevant to other bioorthogonal tags and biomolecules. We expect the improved TCO reactivity obtained using the reported methods will significantly advance bioorthogonal pretargeting applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。