Burn injury-induced G-CSF secretion reduces spic+ erythroblastic island macrophages in the bone marrow and impairs medullary erythropoiesis.

烧伤引起的 G-CSF 分泌减少了骨髓中的 spic+ 红细胞岛巨噬细胞,损害了髓质红细胞生成

阅读:5
作者:Noel John G, Goetzman Holly, Sengupta Satarupa, Medvedovic Mario, Seu Katie G, Gardner Jason C
The erythroblastic island (EBI) functions as a niche in which erythroblastic island macrophages (EBIMφs) are positioned within rings of erythroblasts, providing support and signals that orchestrate efficient erythropoiesis. We postulated burn injury impacts the EBI niche, given the nearly universal presence of anemia and inflammation in burn patients, and a divergent myeloid transcriptional signature that we observed in murine bone marrow following burn injury, in which granulocyte colony-stimulating factor (G-CSF) secretion broadly attenuated the expression of EBIMφ marker genes. Notably, we identified the heme-induced transcription factor Spi-C as a robust marker of EBIMφs in Spicigfp/igfp mice. Two bone marrow cell populations, macrophages and Gr1-low monocytes, possessed cell-intrinsic Spic-GFP. Spic+ macrophages were distinguished by higher levels of green fluorescent protein, autofluorescence, F4/80, and CD163 while CD115 staining was negligible compared with Gr1-low monocytes. Application of Spicigfp/igfp mice in studies revealed a G-CSF-dependent reduction of Spic+ macrophages in postburn marrow, which coincided with a loss of erythroid cells and that G-CSF administration was sufficient to reduce Spic+ macrophages in the marrow. These results provide the first evidence that burn injuries impact the EBI niche through G-CSF-dependent reduction of Spic+ EBIMφs and support the use of Spicigfp/igfp mice in investigation of EBIMφs.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。