Adaptive Autophagy Offers Cardiorenal Protection in Rats with Acute Myocardial Infarction

适应性自噬为急性心肌梗死大鼠提供心肾保护

阅读:5
作者:Zhendong Feng, Han Xue Jiang, Huiyang Chen, Yu Ning Liu, Yahui Wang, Rui Bing Yang, Xueting Han, Chen Hui Xia, Ze Bing Zhu, Hongcai Shang, Aiming Wu, Wei Jing Liu

Conclusion

Autophagy will undergo adaptive changes and play a protective role in the heart and kidney of rats after AMI.

Methods

A rat model of AMI was established by ligating the left anterior descending branch of the coronary artery. Animals were sacrificed at 2 and 4 weeks after the operation to assess the morphological and functional changes of the heart and kidney, as well as the autophagy pathway. In vitro, HK-2 and AC16 cell injuries and the autophagy pathway were assayed after autophagy was inhibited by 3-methyladenine (3-MA) in a hypoxia incubator.

Objective

Understanding the multifactorial changes involved in the kidney and heart after acute myocardial infarction (AMI) is prerequisite for further mechanisms and early intervention, especially autophagy changes. Here, we discussed the role of adaptive autophagy in the heart and kidney of rats with AMI.

Results

We found that the left ventricular systolic pressure (LVSP) significantly decreased in the model group at weeks 2 and 4. At weeks 2 and 4, the level of urinary kidney injury molecule 1 (uKIM1) of the model group was significantly higher than the sham group. At week 4, urinary neutrophil gelatinase-associated lipocalcin (uNGAL) and urinary albumin also significantly increased. At week 2, microtubule-associated protein 1 light chain 3-II (LC3-II), ATG5, and Beclin1 were significantly elevated in the heart and kidney compared with the sham-operated rats, but there was no change in p62 levels. At week 4, LC3-II did not significantly increase and p62 levels significantly increased. In addition, 3-MA markedly increased KIM1, NGAL, and the activity of caspase-3 in the hypoxic HK-2 and AC16 cell.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。