Cell and tissue movement in development, cancer invasion, and immune response relies on chemical or mechanical guidance cues. In many systems, this behavior is locally directed by self-generated signaling gradients rather than long-range, prepatterned cues. However, how heterogeneous mixtures of cells interact nonreciprocally and navigate through self-generated gradients remains largely unexplored. Here, we introduce a theoretical framework for the self-organized chemotaxis of heterogeneous cell populations. We find that the relative chemotactic sensitivities of different cell populations control their long-time coupling and comigration dynamics, with boundary conditions such as external cell and attractant reservoirs substantially influencing the migration patterns. Our model predicts an optimal parameter regime that enables robust and colocalized migration. We test our theoretical predictions with in vitro experiments demonstrating the comigration of distinct immune cell populations, and quantitatively reproduce observed migration patterns under wild-type and perturbed conditions. Interestingly, immune cell comigration occurs close to the predicted optimal regime. Finally, we incorporate mechanical interactions into our framework, revealing a nontrivial interplay between chemotactic and mechanical nonreciprocity in driving collective migration. Together, our findings suggest that self-generated chemotaxis is a robust strategy for the navigation of mixed cell populations.
Self-generated chemotaxis of mixed cell populations.
混合细胞群的自发趋化作用
阅读:3
作者:Uçar Mehmet Can, Alsberga Zane, Alanko Jonna, Sixt Michael, Hannezo Edouard
| 期刊: | Proceedings of the National Academy of Sciences of the United States of America | 影响因子: | 9.100 |
| 时间: | 2025 | 起止号: | 2025 Aug 26; 122(34):e2504064122 |
| doi: | 10.1073/pnas.2504064122 | 研究方向: | 细胞生物学 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
