Reconstitution of Helicobacter pylori VacA toxin from purified components.

利用纯化成分重构幽门螺杆菌VacA毒素

阅读:5
作者:González-Rivera Christian, Gangwer Kelly A, McClain Mark S, Eli Ilyas M, Chambers Melissa G, Ohi Melanie D, Lacy D Borden, Cover Timothy L
Helicobacter pylori VacA is a pore-forming toxin that causes multiple alterations in human cells and contributes to the pathogenesis of peptic ulcer disease and gastric cancer. The toxin is secreted by H. pylori as an 88 kDa monomer (p88) consisting of two domains (p33 and p55). While an X-ray crystal structure for p55 exists and p88 oligomers have been visualized by cryo-electron microscopy, a detailed analysis of p33 has been hindered by an inability to purify this domain in an active form. In this study, we expressed and purified a recombinant form of p33 under denaturing conditions and optimized conditions for the refolding of the soluble protein. We show that refolded p33 can be added to purified p55 in trans to cause vacuolation of HeLa cells and inhibition of IL-2 production by Jurkat cells, effects identical to those produced by the p88 toxin from H. pylori. The p33 protein markedly enhances the cell binding properties of p55. Size exclusion chromatography experiments suggest that p33 and p55 assemble into a complex consistent with the size of a p88 monomer. Electron microscopy of these p33/p55 complexes reveals small rod-shaped structures that can convert to oligomeric flower-shaped structures in the presence of detergent. We propose that the oligomerization observed in these experiments mimics the process by which VacA oligomerizes when in contact with membranes of host cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。