T cell activation is associated with a dramatic reorganization of cell surface proteins and associated signaling components into discrete subdomains within the immunological synapse in T cell:APC conjugates. However, the signals that direct the localization of these proteins and the functional significance of this organization have not been established. In this study, we have used wild-type and LFA-1-deficient, DO11.10 TCR transgenic T cells to examine the role of LFA-1 in the formation of the immunological synapse. We found that coengagement of LFA-1 is not required for the formation of the central supramolecular activation cluster (cSMAC) region, but does increase the accumulation of TCR/class II complexes within the cSMAC. In addition, LFA-1 is required for the recruitment and localization of talin into the peripheral supramolecular activation cluster region and exclusion of CD45 from the synapse. The ability of LFA-1 to increase the amount of TCR engaged during synapse formation and segregate the phosphatase, CD45, from the synapse suggests that LFA-1 might enhance proximal TCR signaling. To test this, we combined flow cytometry-based cell adhesion and calcium-signaling assays and found that coengagement of LFA-1 significantly increased the magnitude of the intracellular calcium response following Ag presentation. These data support the idea that in addition to its important role on regulating T cell:APC adhesion, coengagement of LFA-1 can enhance T cell signaling, and suggest that this may be accomplished in part through the organization of proteins within the immunological synapse.
LFA-1-mediated T cell costimulation through increased localization of TCR/class II complexes to the central supramolecular activation cluster and exclusion of CD45 from the immunological synapse.
LFA-1 介导的 T 细胞共刺激是通过增加 TCR/II 类复合物在中央超分子激活簇的定位,并将 CD45 排除在免疫突触之外来实现的
阅读:5
作者:Graf Beth, Bushnell Timothy, Miller Jim
| 期刊: | Journal of Immunology | 影响因子: | 3.400 |
| 时间: | 2007 | 起止号: | 2007 Aug 1; 179(3):1616-24 |
| doi: | 10.4049/jimmunol.179.3.1616 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
