Intra-abdominal infection is the second most common cause of sepsis, and the mortality rate from abdominal sepsis remains high. High molecular weight (HMW) hyaluronic acid (HA) has been studied in sterile injury models as an anti-inflammatory and anti-permeability agent. This study evaluated the therapeutic effects of intraperitoneal HMW HA administration in mice with peritonitis-induced sepsis. Sepsis was induced in C57BL/6 mice by cecal ligation and puncture (CLP), followed 4âh later by an intraperitoneal injection of HMW HA (20âmg/kg) solution or phosphate buffered saline (PBS). Survival, physiological data, organ injury, bacterial burden, and inflammatory cytokine levels were assessed in the CLP mice. To assess the effect of HA on macrophage phagocytosis activity, RAW264.7 cells, primed with lipopolysaccharide, were exposed with either PBS or HMW HA (500âμg/mL) prior to exposure to 10 CFU of E coli bacteria. HMW HA instillation significantly improved blood oxygenation, lung histology, and survival in CLP mice. Inflammatory cytokine levels in the plasma and bacterial burdens in the lung and spleen were significantly decreased by HA administration at 24âh after CLP. At 6âh after CLP, HA significantly decreased bacterial burden in the peritoneal lavage fluid. HMW HA administration significantly increased E coli bacterial phagocytosis by RAW264.7 cells in part through increased phosphorylation of ezrin/radixin/moesin, a known downstream target of CD44 (a HA receptor); ezrin inhibition abolished the enhanced phagocytosis by RAW264.7 cells induced by HA. Intraperitoneal administration of HMW HA had therapeutic effects against CLP-induced sepsis in terms of suppressing inflammation and increasing antimicrobial activity.
Therapeutic Effects of Hyaluronic Acid in Peritonitis-Induced Sepsis in Mice.
透明质酸对小鼠腹膜炎诱发脓毒症的治疗作用
阅读:7
作者:Lee Jae Hoon, Liu Airan, Park Jeong-Hyun, Kato Hideya, Hao Qi, Zhang Xiwen, Zhou Li, Lee Jae-Woo
| 期刊: | Shock | 影响因子: | 2.900 |
| 时间: | 2020 | 起止号: | 2020 Oct;54(4):488-497 |
| doi: | 10.1097/SHK.0000000000001512 | 研究方向: | 炎症/感染 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
