Dynamic Transcriptomic and Cellular Remodeling Underlie Cuprizone-Induced Demyelination and Endogenous Repair in the CNS.

动态转录组和细胞重塑是铜唑诱导的中枢神经系统脱髓鞘和内源性修复的基础

阅读:9
作者:Ma Yantuanjin, Liu Tianyi, Li Zhipeng, Wei Wei, Zhao Qiting, Wang Shufen
Demyelination in the central nervous system (CNS) disrupts neuronal communication and promotes neurodegeneration. Despite the widespread use of cuprizone-induced demyelination models to study myelin injury and repair, the mechanisms underlying oligodendrocyte apoptosis and regeneration are poorly understood. This study investigated the dynamic cellular and molecular changes that occur during demyelination and remyelination, with a focus on glial cell responses, blood-brain barrier (BBB) integrity, and neuroimmune interactions. C57BL/6J mice exposed to cuprizone exhibited weight loss, sensorimotor deficits, and cognitive decline, which were reversed during remyelination. Histological and immunofluorescence analyses revealed reduced myelin protein levels, including myelin basic protein (MBP) and myelin-associated glycoprotein (MAG), and decreased oligodendrocyte populations during demyelination, with recovery during repair. The BBB permeability increases during demyelination, is associated with the decreased expression of tight junction proteins (ZO-1, Occludin), and normalizes during remyelination. Single-cell RNA sequencing revealed dynamic shifts in glial cell populations and upregulated Psap-Gpr37l1 signaling. Neuroimmune activation and oxidative stress peak during demyelination, characterized by elevated ROS, MDA, and immune cell infiltration, followed by recovery. Transcriptomic profiling revealed key inflammatory pathways (JAK-STAT, NF-κB) and hub genes associated with demyelination and repair. These findings provide insights into myelin repair mechanisms and highlight potential therapeutic targets for treating demyelinating diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。