The adrenal zona glomerulosa (ZG) secretes aldosterone to regulate sodium balance. Chronic sodium restriction increases aldosterone accompanied by ZG expansion. The ZG is innervated by sympathetic, vasoactive intestinal polypeptide (VIP) and neuropeptide tyrosine (NPY), and sensory, calcitonin gene-related peptide, nerves. It is unclear whether innervation is affected by ZG growth. Therefore, we measured neurite outgrowth in the ZG of adult male rats after dietary sodium manipulation. In response to 1 wk sodium restriction, VIP and NPY fibers elongated in parallel with expansion of the ZG, shown by aldosterone synthase (AS) expression, but calcitonin gene-related peptide fibers were not affected. Sodium repletion resulted in parallel regression in VIP and NPY fiber length and AS expression. These results show that sympathetic, but not sensory, innervation is coordinated with ZG growth. Mediators underlying changes in innervation are unknown; therefore, we characterized a novel gene TMEM35 [termed the unknown factor-1 (TUF1) due to its unknown function] that shows extensive overlap with AS in ZG. After sodium restriction, TUF1 expanded in parallel with the ZG. TUF1 bound the low-affinity neurotrophin receptor, p75NTR, which was expressed in NPY fibers and showed a response similar to TUF1 after sodium manipulation. TUF1- p75NTR binding was competitively displaced by nerve growth factor but not by TUF1 lacking the p75NTR binding motif. Moreover, TUF1 mRNA in rat ZG cells increased after angiotensin II exposure in vitro. Collectively, these findings suggest that TMEM35/TUF1 is a candidate for modulating neurite outgrowth in the ZG after sodium depletion.
Sodium depletion increases sympathetic neurite outgrowth and expression of a novel TMEM35 gene-derived protein (TUF1) in the rat adrenal zona glomerulosa.
钠耗竭可增加大鼠肾上腺球状带交感神经突的生长和新型 TMEM35 基因衍生蛋白 (TUF1) 的表达
阅读:8
作者:Tran Phu V, Georgieff Michael K, Engeland William C
| 期刊: | Endocrinology | 影响因子: | 3.300 |
| 时间: | 2010 | 起止号: | 2010 Oct;151(10):4852-60 |
| doi: | 10.1210/en.2010-0487 | 种属: | Rat |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
