Immune checkpoint inhibitors (ICIs) have successfully transformed clinical oncology against various cancers. However, their widespread utility is limited by low response rates and severe adverse events; thus, a safe and effective approach is required to address these issues. Here, we report the nanoengineering of an anti-programmed cell death-1 antibody (aPD-1) to boost the therapeutic effects following direct local administration into tumors. Specifically, we prepared an aPD-1 nanoformulation using biocompatible mesoporous polydopamine nanoparticles (MPNs) that allow facile and efficient surface functionalization of aPD-1 via latent reactivity to proteins. The nanoformulation increased the antagonistic activity of aPD-1 against PD-1 receptors by enhancing their avidity interactions, effectively blocking PD-1 immune checkpoint signaling in T cells to restore their activation and effector function. The nanoformulation administered via local intratumoral injection enhanced tumor retention of aPD-1 and elicited strong antitumor efficacy against local tumors and long-term tumor recurrence. Our results indicate that robust immune checkpoint signaling blockade in the local tumors using nano-ICI treatment can effectively orchestrate antitumor immunity for local and systemic cancer treatment. Overall, this study underscores the potential of a biomaterial-based nanoengineering approach for improving the efficacy and safety of antibody-based ICI therapy with localized tumor treatment.
Nanoparticulated Anti-Programmed Cell Death-1 Antibody Improves Localized Immune Checkpoint Blockade Therapy.
纳米颗粒抗程序性细胞死亡蛋白-1抗体可改善局部免疫检查点阻断疗法
阅读:3
作者:Mujahid Khizra, Aslam Muhammad Arif, Han Kai, Son Sejin, Nam Jutaek
| 期刊: | Biomaterials Research | 影响因子: | 9.600 |
| 时间: | 2025 | 起止号: | 2025 Jul 4; 29:0221 |
| doi: | 10.34133/bmr.0221 | 研究方向: | 细胞生物学 |
| 信号通路: | Checkpoint | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
