AIM: Mononuclear cell (MC) infiltration into the arterial subendothelium is a key event in atherogenesis. Rosuvastatin (Rosu) and bexarotene (Bex) exert anti-inflammatory activity, but serious dose-related adverse effects have emerged. The need for safer and effective strategies to prevent and treat atherosclerosis led us to test the effect of combined use of both drugs on angiotensin II (Ang-II)-induced arterial MC recruitment. RESULTS: Vehicle, Rosu (10-30 nM), Bex (0.3-1 μM), or a combination of both were administered to human umbilical arterial endothelial cells (HUAECs) 20 h before stimulation with 1 μM Ang-II (4 h). Surprisingly, a combination of Rosu (10 nM)+Bex (0.3 μM), which did not influence Ang-II-induced MC recruitment when either stimulus was studied alone, significantly reduced this response. This effect was accompanied by diminished Ang-II-induced ICAM-1, VCAM-1, and CX3CL1 endothelial expression and CXCL1, CXCL8, CCL2, and CCL5 production. Preincubation of HUAECs with Rosu+Bex inhibited Nox5 expression and Nox5-induced RhoA activation stimulated by Ang-II through increased RXRα, PPARα, and PPARγ expression in addition to RXRα/PPARα and RXRα/PPARγ interactions. In vivo, combined but not single administration of Rosu (1.25 mg/kg/day) and Bex (10 mg/kg/day) significantly diminished Ang-II-induced arteriolar leukocyte adhesion in the cremasteric microcirculation of C57BL/6 mice and atherosclerotic lesion formation in apoE(-/-) mice subjected to an atherogenic diet. INNOVATION AND CONCLUSION: Combined administration of Bex+Rosu at suboptimal doses may constitute a new alternative and effective therapy in the control of the vascular inflammation associated to cardiometabolic disorders, since they synergize in their anti-inflammatory actions and may counteract their associated adverse effects.
Combined sub-optimal doses of rosuvastatin and bexarotene impair angiotensin II-induced arterial mononuclear cell adhesion through inhibition of Nox5 signaling pathways and increased RXR/PPARα and RXR/PPARγ interactions.
瑞舒伐他汀和贝沙罗汀联合使用,剂量不足,会通过抑制 Nox5 信号通路和增加 RXR/PPARα 和 RXR/PPARα 相互作用,损害血管紧张素 II 诱导的动脉单核细胞粘附
阅读:4
作者:Escudero Paula, Martinez de Marañón Aranzazu, Collado Aida, Gonzalez-Navarro Herminia, Hermenegildo Carlos, Peiró Concepción, Piqueras Laura, Sanz Maria-Jesus
| 期刊: | Antioxidants & Redox Signaling | 影响因子: | 6.100 |
| 时间: | 2015 | 起止号: | 2015 Apr 10; 22(11):901-20 |
| doi: | 10.1089/ars.2014.5969 | 研究方向: | 信号转导、细胞生物学 |
| 信号通路: | Adhesion/ECM | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
