Microcontact printing of P-selectin increases the rate of neutrophil recruitment under shear flow.

P-选择素的微接触印刷可提高剪切流下中性粒细胞的募集率

阅读:4
作者:Lee Dooyoung, King Michael R
The local variation of P-selectin expression on inflamed endothelial layers affects leukocyte recruitment in vivo. As an initial study of the spatially heterogeneous presentation of P-selectin in vitro, the influence of microcontact printing (microCP) of P-selectin on a planar surface in neutrophil recruitment was investigated using a parallel-plate flow chamber. Microline patterned and nonpatterned P-selectin were prepared using PDMS, Poly(dimethylsiloxane) (PMDS) stamps and isolated neutrophils perfused over the surface to quantify the level of neutrophil recruitment. We first found a significant increase in cell rolling flux and a decrease in cell rolling velocity on the microcontact printed P-selectin-surfaces compared with a randomly adsorbed P-selectin-surface. However, the increase in rolling adhesion under shear on the surfaces prepared by microCP was not proportional to the number of functional sites of P-selectin transferred using immunofluorescent labeling. Interestingly, the relative immunofluorescent intensities of the nonfunctional regions of microcontact printed P-selectin-surfaces were substantially lower than that that of randomly adsorbed P-selectin. Taken together, these data indicate that the microCP of selectin increases the transfer rate of the adhesion molecule on a surface in the functionally correct orientation and, consequently, improves the recruitment of leukocytes to the selectin surface under flow. It is concluded that microCP may be a more general technique to control protein orientation on a substrate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。