BACKGROUND: Exacerbation of cutaneous wound infections and delayed wound closure are frequent complications seen in alcohol exposed subjects who sustain injuries. We previously reported that acute alcohol exposure alters the early dermal inflammatory phase of wound healing and also several parameters of the proliferative wound healing phase in wounds from ethanol (EtOH)-treated mice for several days or weeks after EtOH exposure. Hence, it is likely that the cumulative defects arising in the early phases of the wound healing process directly contribute to the increased complications observed in intoxicated patients at the time of injury. METHODS: C57BL/6 mice were given intraperitoneal EtOH (2.2 g/kg body weight) or vehicle (saline) EtOH using our episodic binge EtOH exposure protocol (3 days EtOH, 4 days off, 3 days EtOH) to yield a blood alcohol concentration (BAC) of 300 mg/dl at the time of wounding. Mice were subjected to six 3 mm full-thickness dorsal wounds and immediately treated topically with 10 μl of sterile saline (control) or diluted Staphylococcus aureus corresponding to 1 à 10(4) CFU/wound. Wounds were harvested at 24 hours post injury to evaluate wound area, neutrophil and macrophage accumulation, and the protein levels of cytokines, interleukin-6 (IL-6), IL-1β, and IL-10, and chemokines, macrophage inflammatory protein-2 (MIP-2) and MIP-1α, monocyte chemotactic protein-1 (MCP-1), and keratinocyte-derived chemokine (KC). The abundance and localization of cathelicidin-related antimicrobial peptide (CRAMP) and the kallikrein epidermal proteases (KLK5 and KLK7) were also determined. RESULTS: Compared to control mice, EtOH-treated mice exhibited delayed wound closure, decreased macrophage accumulation, and impaired production of MIP-1α. Furthermore, skin from EtOH-treated mice demonstrated a reduction in the abundance of epidermal CRAMP and KLK7. CONCLUSIONS: These findings suggest that EtOH exposure hinders several distinct components of the innate immune response, including phagocyte recruitment and chemokine/cytokine and AMP production. Together, these effects likely contribute to delayed wound closure and enhanced infection severity observed in intoxicated patients.
Episodic binge ethanol exposure impairs murine macrophage infiltration and delays wound closure by promoting defects in early innate immune responses.
间歇性大量摄入乙醇会损害小鼠巨噬细胞浸润,并通过促进早期先天免疫反应缺陷来延缓伤口愈合
阅读:8
作者:Curtis Brenda J, Hlavin Sara, Brubaker Aleah L, Kovacs Elizabeth J, Radek Katherine A
| 期刊: | Alcoholism-Clinical and Experimental Research | 影响因子: | 2.700 |
| 时间: | 2014 | 起止号: | 2014 May;38(5):1347-55 |
| doi: | 10.1111/acer.12369 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
