Catechin and Procyanidin B(2) Modulate the Expression of Tight Junction Proteins but Do Not Protect from Inflammation-Induced Changes in Permeability in Human Intestinal Cell Monolayers.

儿茶素和原花青素 B(2) 调节紧密连接蛋白的表达,但不能保护人类肠道细胞单层免受炎症引起的通透性变化的影响

阅读:6
作者:Bianchi Massimiliano G, Chiu Martina, Taurino Giuseppe, Brighenti Furio, Del Rio Daniele, Mena Pedro, Bussolati Ovidio
The possibility of counteracting inflammation-related barrier defects with dietary compounds such as (poly)phenols has raised much interest, but information is still scarce. We have investigated here if (+)-catechin (CAT) and procyanidin B(2) (PB(2)), two main dietary polyphenols, protect the barrier function of intestinal cells undergoing inflammatory stress. The cell model adopted consisted of co-cultured Caco-2 and HT29-MTX cells, while inflammatory conditions were mimicked through the incubation of epithelial cells with the conditioned medium of activated macrophages (MCM). The epithelial barrier function was monitored through trans-epithelial electrical resistance (TEER), and ROS production was assessed with dichlorofluorescein, while the expression of tight-junctional proteins and signal transduction pathways were evaluated with Western blot. The results indicated that MCM produced significant oxidative stress, the activation of NF-κB and MAPK pathways, a decrease in occludin and ZO-1 expression, and an increase in claudin-7 (CL-7) expression, while TEER was markedly lowered. Neither CAT nor PB(2) prevented oxidative stress, transduction pathways activation, ZO-1 suppression, or TEER decrease. However, PB(2) prevented the decrease in occludin expression and both polyphenols produced a huge increase in CL-7 abundance. It is concluded that, under the conditions adopted, CAT and PB(2) do not prevent inflammation-dependent impairment of the epithelial barrier function of intestinal cell monolayers. However, the two compounds modify the expression of tight-junctional proteins and, in particular, markedly increase the expression of CL-7. These insights add to a better understanding of the potential biological activity of these major dietary flavan-3-ols at intestinal level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。