Porous Precision-Templated 40 μm Pore Scaffolds Promote Healing through Synergy in Macrophage Receptor with Collagenous Structure and Toll-Like Receptor Signaling.

多孔精密模板 40μm 孔支架通过巨噬细胞受体与胶原结构和 Toll 样受体信号传导的协同作用促进愈合

阅读:14
作者:Chan Nathan R, Hwang Billanna, Mulligan Michael S, Ratner Buddy D, Bryers James D
Porous precision-templated scaffolds (PTS) with uniform, interconnected, 40 μm pores have shown favorable healing outcomes and a reduced foreign body reaction (FBR). Macrophage receptor with collagenous structure (MARCO) and toll-like receptors (TLRs) have been identified as key surface receptors in the initial inflammatory phase of wound healing. However, the role of MARCO and TLRs in modulating monocyte and macrophage phenotypes within PTS remains uncharacterized. In this study, we demonstrate a synergetic relationship between MARCO and TLR signaling in cells inhabiting PTS, where induction with TLR3 or TLR4 agonists to 40 μm scaffold-resident cells upregulates the transcription of MARCO. Upon deletion of MARCO, the prohealing phenotype within 40 μm PTS polarizes to a proinflammatory and profibrotic phenotype. Analysis of downstream TLR signaling shows that MARCO is required to attenuate nuclear factor kappa B (NF-κB) inflammation in 40 μm PTS by regulating the transcription of inhibitory NFKB inhibitor alpha (NFKBIA) and interleukin-1 receptor-associated kinase 3 (IRAK-M), primarily through a MyD88-dependent signaling pathway. Investigation of implant outcome in the absence of MARCO demonstrates an increase in collagen deposition within the scaffold and the development of tissue fibrosis. Overall, these results further our understanding of the molecular mechanisms underlying MARCO and TLR signaling within PTS. Impact statement Monocyte and macrophage phenotypes in the foreign body reaction (FBR) are essential for the development of a proinflammatory, prohealing, or profibrotic response to implanted biomaterials. Identification of key surface receptors and signaling mechanisms that give rise to these phenotypes remain to be elucidated. In this study, we report a synergistic relationship between macrophage receptor with collagenous structure (MARCO) and toll-like receptor (TLR) signaling in scaffold-resident cells inhabiting porous precision-templated 40 μm pore scaffolds through a MyD88-dependent pathway that promotes healing. These findings advance our understanding of the FBR and provide further evidence that suggests MARCO, TLRs, and fibrosis may be interconnected.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。