Differential biomarker expression of blood and lymphatic vasculature in multi-organ-chips.

多器官芯片中血液和淋巴管系统的差异性生物标志物表达

阅读:6
作者:Jäger Jonas, Thon Maria, Schimek Katharina, Marx Uwe, Gibbs Susan, Koning Jasper J
Since the blood and lymphatic endothelium regulates homeostasis and inflammation during health and disease, establishment of vascularized Organ-on-Chip platforms with blood and lymphatic endothelial cells (BEC/LEC) is a pre-requisite to further advance the field of tissue engineering. Here, we aimed to determine whether characteristics of BECs and LECs cultured under flow in a multi-organ-chip (MOC) are influenced by shear stress or inflammation. Dermis-derived primary BECs and LECs were used to endothelialize a MOC followed by culture for up to 14 days at lymphatic and blood flow rates. Under blood flow, both cell types changed morphology, aligned in flow direction, and showed close cell-cell contacts as in in vivo blood vasculature. Under lymphatic flow, neither BEC nor LEC aligned, and both showed a cobblestone-appearance with limited intercellular contacts similar to lymphatics. Cells retained their cell type-specific phenotype and cytokine secretion profiles. CCL21 expression in LECs was rescued by flow, but diminished again with TNFα exposure, together with the LEC-specific markers PROX1 and TFF3. Homeostatic cytokine secretion was higher in BECs, but the response to TNFα was more pronounced in LECs. Results indicate that BEC and LEC phenotype and cytokine secretion is mostly an intrinsic property with only morphology and CCL21 being influenced by flow.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。