Self-assembled cartilaginous microtissues provide a promising means of repairing challenging skeletal defects and connective tissues. However, despite their considerable promise in tissue engineering, the mechanical response of these engineered microtissues is not well understood. Here we examine the mechanical and viscoelastic response of progenitor cell aggregates formed from human primary periosteal cells and the resulting cartilaginous microtissues under large deformations as might be encountered in vivo. We find that the mechanical response of these tissues is strongly size dependent due to surface tension effects, with a scaling law for the Young's modulus of E â D(m), where D is the diameter of the tissues, and m varies with the tissue type. Similar size effects are found to govern the interfacial surface tension and the viscosity. In addition, these microtissues are extremely resilient, as they sustain over 90 % of compressive strain without mechanical failure. Stress relaxation experiments reveal a fast stress dissipation at short time scale within a few seconds, followed by oscillations in measured stresses that depend on actomyosin contractility. In summary, these experiments reveal the remarkable and unanticipated resilience of cartilaginous microtissues under large mechanical strains, a property that may facilitate their use in a variety of tissue engineering applications. More broadly, our data highlight the importance of surface tensions in determining the mechanical properties of tissues on the micron and the mm length scales.
Cartilaginous microtissues exhibit extreme resilience under compression with size-dependent mechanical properties.
软骨微组织在压缩下表现出极强的回弹力,其力学性能与尺寸相关
阅读:6
作者:Androulidakis Charalampos, Svitina Hanna, Ioannidis Konstantinos, Dunn Alexander R, Papantoniou Ioannis
| 期刊: | Biomaterials | 影响因子: | 12.900 |
| 时间: | 2025 | 起止号: | 2025 Jun;317:123074 |
| doi: | 10.1016/j.biomaterials.2024.123074 | 研究方向: | 骨科研究 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
