Leptin increases focal inflammation and osteolysis induced by polyethylene particles in leptin-deficient ob/ob mice, suggesting that this adipokine, an important immune modulator, contributes to orthopedic implant failure. Focal inflammation leads to bone loss at distant skeletal sites, and it is plausible that leptin also contributes to this response. We tested this possibility in 6-week-old female ob/ob mice (6-8/group) by evaluating bone architecture, turnover and gene expression 12 days following the surgical placement of polyethylene particles over the calvaria. Particle treatment had minimal effect on bone mass, density or cancellous bone architecture in the femur and 5th lumbar vertebra (LV). However, compared to controls, particle treatment altered tibial expression levels of 32/84 genes related to bone metabolism. Subcutaneous infusion of leptin (6 μg/d) to mice following the placement of polyethylene particles over the calvaria (combination treatment) resulted in cancellous bone loss in the distal femur metaphysis and LV and in the differential expression of 34/84 genes, 15 of which overlapped with particle treatment. Notably, combination treatment, but not particle treatment, resulted in increased expression of genes strongly associated with bone turnover and response to inflammation. Leptin treatment alone (0.1-10 μg/day) did not result in bone loss in the femur or LV in the ob/ob mice. These findings suggest that leptin exaggerates the detrimental effects of particle-induced inflammation on bone turnover balance, leading to systemic bone loss.
Leptin potentiates bone loss at skeletal sites distant from focal inflammation in female ob/ob mice.
瘦素会加剧雌性 ob/ob 小鼠骨骼局部炎症部位的骨质流失
阅读:15
作者:Turner Russell T, Philbrick Kenneth A, Wong Carmen P, Fichter Aidan R, Branscum Adam J, Iwaniec Urszula T
| 期刊: | Journal of Endocrinology | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Feb 17; 264(3):e240324 |
| doi: | 10.1530/JOE-24-0324 | 研究方向: | 炎症/感染 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
