Therapeutic Effect of Biomimetic Scaffold Loaded with Human Amniotic Epithelial Cell-Derived Neural-like Cells for Spinal Cord Injury.

载有人类羊膜上皮细胞衍生神经样细胞的仿生支架对脊髓损伤的治疗效果

阅读:5
作者:Qiu Chen, Sun Yuan, Li Jinying, Xu Yuchen, Zhou Jiayi, Qiu Cong, Zhang Shaomin, He Yong, Yu Luyang
Spinal cord injury (SCI) results in devastating consequences for the motor and sensory function of patients due to neuronal loss and disrupted neural circuits, confronting poor prognosis and lack of effective therapies. A new therapeutic strategy is urgently required. Here, human amniotic epithelial cells (hAEC), featured with immunocompatibility, non-tumorgenicity and no ethical issues, were induced into neural-like cells by a compound cocktail, as evidenced with morphological change and the expression of neural cell markers. Interestingly, the hAEC-neural-like cells maintain the characteristic of low immunogenicity as hAEC. Aiming at SCI treatment in vivo, we constructed a 3D-printed GelMA hydrogel biomimetic spinal cord scaffold with micro-channels, in which hAEC-neural-like cells were well-induced and grown. In a rat full transection SCI model, hAEC-neural-like cell scaffolds that were implanted in the lesion demonstrated significant therapeutic effects; the neural circuit and hindlimb locomotion were partly recovered compared to little affection in the SCI rats receiving an empty scaffold or a sham implantation operation. Thus, the establishment of hAEC-neural-like cell biomimetic scaffolds may provide a safe and effective treatment strategy for SCI.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。