Dependence of cathepsin L-induced coronary endothelial dysfunction upon activation of NAD(P)H oxidase.

组织蛋白酶 L 诱导的冠状动脉内皮功能障碍依赖于 NAD(P)H 氧化酶的激活

阅读:7
作者:Zhang Fan, Zhang Yang, Li Pin-Lan
Cathepsin L is a cysteine protease that can generate endogenous endostatin in vascular and epithelial basement membranes and importantly participates in a variety of pathophysiological processes. The present study was designed to determine whether this cathepsin L-derived endogenous endostatin alters endothelium-dependent vasodilator responses in coronary arteries via NAD(P)H oxidase activation. In isolated and perfused small bovine coronary arteries, administration of cathepsin L (200 ng/ml) markedly attenuated endothelium-dependent vasodilator responses to bradykinin or A23187 by 56.16+/-9.58% and 68.95+/-10.32%, respectively. This inhibitory effect of cathepsin L on endothelium-dependent vasodilator responses could be significantly reversed by pre-incubation of the arteries with O(2)(-) scavenger, Tiron, or neutralizing anti-endostatin antibody. By fluorescent ELISA assay, cathepsin L dose-dependently increased endostatin production in coronary arteries. In situ high-speed dual wavelength switching fluorescent microscopic imaging showed that cathepsin L decreased bradykinin- and A23187-induced NO levels in the intact endothelium, but it had no effect on Ca(2+) response to these vasodilators. This cathepsin L-induced reduction of NO was restored by the pretreatment of an anti-endostatin antibody. Electron spin resonance (ESR) analysis demonstrated that cathepsin L increased O(2)(-) production which could be markedly attenuated by the NAD(P)H oxidase inhibitors, apocynin or anti-endostatin antibody. It is concluded that endostatin could be endogenously produced in coronary arteries when cathepsin L is increased and that this cathepsin L-derived endostatin, if excessive, may result in endothelial dysfunction through enhanced production of O(2)(-) due to NAD(P)H oxidase activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。