Epoxyeicosatrienoic acid(s) (EETs) have been shown to protect cardiovascular tissue against apoptosis dependent on activation of targets such as ATP-sensitive K+ (KATP) channels (sarcolemmal and mitochondrial), calcium-activated K+ channels, extracellular signal-regulated kinase or phosphoinositide 3-kinase (PI3K). We tested if EETs protect human atrial tissue ex vivo from hypoxia/reoxygenation (H/R) injury, and compared our results with myocardium from two rodent species, rats and mice. EETs reduced myocardial caspase 3 activity in all three species and protected against loss of mitochondrial membrane potential in primary cultures of neonatal rat ventricular myocytes submitted to H/R. In addition, EETs protected mouse pulmonary arteries ex vivo exposed to H/R. Myocardium and pulmonary arteries from genetically engineered mice having elevated plasma levels of EETs (Ephx2-/-) exhibited protection from H/R-induced injury over that of wild type controls, suggesting that endogenously produced EETs may have pro-survival effects. Electrophysiological studies in myocytes demonstrated that EETs can stimulate KATP currents even when PI3K is inhibited. Similarly, activation of PI3K/Akt occurred in the presence of the KATP channel blocker glibenclamide. Based upon loss of protection with EETs in the presence of either wortmannin (a PI3K inhibitor) or glibenclamide, simultaneous activation of at least 2 pathways, PI3K and KATP channels respectively, appears to be required for protection. In conclusion, we demonstrate that exogenous and endogenous EETs have powerful pro-survival effects in cardiovascular tissues including diseased human myocardium, mediated by activation of not only one but at least two pathways, PI3K and KATP channels.
Protective actions of epoxyeicosatrienoic acid: dual targeting of cardiovascular PI3K and KATP channels.
环氧二十碳三烯酸的保护作用:对心血管 PI3K 和 KATP 通道的双重靶向作用
阅读:6
作者:Bodiga Sreedhar, Zhang Rong, Jacobs Dexter E, Larsen Brandon T, Tampo Akihito, Manthati Vijay L, Kwok Wai-Meng, Zeldin Darryl C, Falck John R, Gutterman David D, Jacobs Elizabeth R, Medhora Meetha M
| 期刊: | Journal of Molecular and Cellular Cardiology | 影响因子: | 4.700 |
| 时间: | 2009 | 起止号: | 2009 Jun;46(6):978-88 |
| doi: | 10.1016/j.yjmcc.2009.01.009 | 研究方向: | 心血管 |
| 信号通路: | PI3K/Akt | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
