Solution characterization of the extracellular region of CD147 and its interaction with its enzyme ligand cyclophilin A.

CD147 细胞外区及其与酶配体环孢菌素 A 相互作用的溶液表征

阅读:9
作者:Schlegel Jennifer, Redzic Jasmina S, Porter Christopher C, Yurchenko Vyacheslav, Bukrinsky Michael, Labeikovsky Wladimir, Armstrong Geoffrey S, Zhang Fengli, Isern Nancy G, DeGregori James, Hodges Robert, Eisenmesser Elan Zohar
The CD147 receptor plays an integral role in numerous diseases by stimulating the expression of several protein families and serving as the receptor for extracellular cyclophilins; however, neither CD147 nor its interactions with its cyclophilin ligands have been well characterized in solution. CD147 is a unique protein in that it can function both at the cell membrane and after being released from cells where it continues to retain activity. Thus, the CD147 receptor functions through at least two mechanisms that include both cyclophilin-independent and cyclophilin-dependent modes of action. In regard to CD147 cyclophilin-independent activity, CD147 homophilic interactions are thought to underlie its activity. In regard to CD147 cyclophilin-dependent activity, cyclophilin/CD147 interactions may represent a novel means of signaling since cyclophilins are also peptidyl-prolyl isomerases. However, direct evidence of catalysis has not been shown within the cyclophilin/CD147 complex. In this report, we have characterized the solution behavior of the two most prevalent CD147 extracellular isoforms through biochemical methods that include gel-filtration and native gel analysis as well as directly through multiple NMR methods. All methods indicate that the extracellular immunoglobulin-like domains are monomeric in solution and, thus, suggest that CD147 homophilic interactions in vivo are mediated through other partners. Additionally, using multiple NMR techniques, we have identified and characterized the cyclophilin target site on CD147 and have shown for the first time that CD147 is also a substrate of its primary cyclophilin enzyme ligand, cyclophilin A.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。