The presence of a defect in mature articular cartilage can lead to degenerative changes of the joint. This is in part caused by the inability of cartilage to regenerate tissue that is capable of spanning a fissure or crack. In this study, we hypothesized that introduction of a biodegradable cell-seeded nanofibrous hydrogel, Puramatrix(), into a cartilage gap would facilitate the generation of a mechanically stable interface. The effects of chondrocyte incorporation within the hydrogel and supplementation with transforming growth factor-beta3 (TGFbeta3), a known regulator of cell growth and differentiation, on cartilage integration were examined mechanically and histologically as a function of cell density and incubation time. When supplemented with TGFbeta3, the cell-seeded hydrogel exhibited abundant matrix generation within the hydrogel and a corresponding increase in maximum push-out stress as compared to all other groups. Furthermore, initial cell seeding density affected interfacial strength in a time-dependent manner. This study suggests that a cell-seeded TGFbeta3-supplemented hydrogel can encourage integration between two opposing pieces of articular cartilage.
A nanofibrous cell-seeded hydrogel promotes integration in a cartilage gap model.
纳米纤维细胞接种水凝胶促进软骨缺损模型中的整合
阅读:8
作者:Maher S A, Mauck R L, Rackwitz L, Tuan R S
| 期刊: | Journal of Tissue Engineering and Regenerative Medicine | 影响因子: | 2.600 |
| 时间: | 2010 | 起止号: | 2010 Jan;4(1):25-9 |
| doi: | 10.1002/term.205 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
