Introduction: Recognition of fungal surface β-glucan by pattern recognition receptor Dectin-1 is a critical process for fungal clearance in the lung. In humans, persistent fungal infection is observed in individuals with particular Dectin-1 polymorphism. We have identified that nitric oxide (NO) modifies critical cysteines in pattern recognition molecules to disassemble and alter protein function. There is a hydrophobic S-nitrosylation motif present in surfactant protein-D (SP-D) that is also present in Dectin-1. We hypothesized that Dectin-1 can be modified by nitrosative stress potentially leading to impairment of fungal clearance. Materials and Methods: Recombinant Dectin-1 was incubated with l-nitrosocysteine (L-SNOC) and S-nitrosylated Dectin-1 was detected by Biotin-switch assay. Cells of a murine macrophage line (Raw 264.7) were incubated with S-nitroso-glutathione (GSNO) and Dectin-1 shedding from the cell surface was determined by Western blot. Dectin-1 quaternary structure was determined by native gel electrophoresis. Dectin-1 function was assayed by NF-κB activity and IL-6 mRNA real-time polymerase chain reaction (PCR). Phagocytic activity was measured by fluorescence labeled zymosan beads. Results: Dectin-1 was S-nitrosylated by l-nitrosocysteine (L-SNOC) in vitro, as determined by Biotin-switch assay, resulting in structural disruption. We used Western blotting and flow cytometry to demonstrate that incubation of a murine macrophage cell line (Raw 264.7 cells) with GSNO reduced the surface Dectin-1 expression as a result of shedding to the media. The shedding of Dectin-1 is due to formation of S-nitrosothiol (SNO)-Dectin-1 and disruption of the Dectin-1 oligomeric complex. GSNO also induces Dectin-1 shedding from the cell surface. The functional significance of GSNO treatment of macrophages is shown by reduced β-glucan-mediated signaling in terms of NF-κB function and IL-6 expression. Finally, it was demonstrated that GSNO treatment reduces the capability of macrophages to phagocytose zymosan. Conclusions: These data provide mechanistic data to support the role of Dectin-1 nitrosylation as a mediator of reduced fungal clearance in the face of increased NO exposure.
Nitric Oxide Regulates Macrophage Fungicidal Activity via S-nitrosylation of Dectin-1.
一氧化氮通过Dectin-1的S-亚硝基化调节巨噬细胞的杀真菌活性
阅读:5
作者:Gow James, Yang Yujie, Govindraj Mohan, Guo Changjiang
| 期刊: | Applied In Vitro Toxicology | 影响因子: | 0.000 |
| 时间: | 2020 | 起止号: | 2020 Sep 1; 6(3):90-98 |
| doi: | 10.1089/aivt.2020.0009 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
