Background
Toll-like receptor 2 (TLR2) contributes to sepsis pathogenesis such as deleterious systemic inflammation, cardiac dysfunction, and high mortality in animal studies. Mitochondrial dysfunction is a key molecular event that is associated with organ injury in sepsis. The role of TLR2 in sepsis-induced mitochondrial dysfunction remains unclear.
Conclusions
TLR2 signaling plays a critical role in mediating mitochondrial dysfunction in peritoneal leukocytes during polymicrobial sepsis.
Methods
Intracellular hydrogen peroxide (H2O2), mitochondrial superoxide (O2), mitochondrial membrane potential (ΔΨm), and intracellular adenosine triphosphate (ATP) were measured in peritoneal leukocytes. A mouse model of polymicrobial sepsis was generated by cecum ligation and puncture (CLP). Wild-type and TLR2-deficient (TLR2) mice were subjected to sham or CLP. Mitochondrial functions including reactive oxygen species (ROS), ΔΨm, intracellular ATP, and complex III activity were measured.
Results
TLR2/1 activation by Pam3Cys enhanced intracellular H2O2 and mitochondrial O2 production in leukocytes, but had no effect on mitochondrial ΔΨm and ATP production. The effect was specific for TLR2/1 as TLR3 or TLR9 ligands did not induce ROS production. Polymicrobial sepsis induced mitochondrial dysfunction in leukocytes, as demonstrated by increased H2O2 and mitochondrial O2- production (CLP vs. sham; H2O2: 3,173±498, n=5 vs. 557±38, n=4; O2-: 707±66, n=35 vs. 485±35, n=17, mean fluorescence intensity, mean±SEM), attenuated complex III activity (13±2, n=16 vs. 30±3, n=7, millioptical densities/min), loss of mitochondrial ΔΨm, and depletion of intracellular ATP (33±6, n=11 vs. 296±29, n=4, nmol/mg protein). In comparison, there was significant improvement in mitochondrial function in septic TLR2-/- mice as evidenced by attenuated mitochondrial ROS production, better-maintained mitochondrial ΔΨm, and higher cellular ATP production. Conclusions: TLR2 signaling plays a critical role in mediating mitochondrial dysfunction in peritoneal leukocytes during polymicrobial sepsis.
