Environmental stimuli attack the skin daily resulting in the generation of reactive oxygen species (ROS) and inflammation. One pathway that regulates oxidative stress in skin involves Protein Phosphatase 2A (PP2A), a phosphatase which has been previously linked to Alzheimer's Disease and aging. Oxidative stress decreases PP2A methylation in normal human dermal fibroblasts (NHDFs). Thus, we hypothesize agents that increase PP2A methylation and activity will promote skin health and combat aging. To discover novel inhibitors of PP2A demethylation activity, we screened a library of 32 natural botanical extracts. We discovered Grape Seed Extract (GSE), which has previously been reported to have several benefits for skin, to be the most potent PP2A demethylating extract. Via several fractionation and extraction steps we developed a novel grape seed extract called Activated Grape Seed Extract (AGSE), which is enriched for PP2A activating flavonoids that increase potency in preventing PP2A demethylation when compared to commercial GSE. We then determined that 1% AGSE and 1% commercial GSE exhibit distinct gene expression profiles when topically applied to a 3D human skin model. To begin to characterize AGSE's activity, we investigated its antioxidant potential and demonstrate it reduces ROS levels in NHDFs and cell-free assays equal to or better than Vitamin C and E. Moreover, AGSE shows anti-inflammatory properties, dose-dependently inhibiting UVA, UVB and chemical-induced inflammation. These results demonstrate AGSE is a novel, multi-functional extract that modulates methylation levels of PP2A and supports the hypothesis of PP2A as a master regulator for oxidative stress signaling and aging in skin.
AGSE: A Novel Grape Seed Extract Enriched for PP2A Activating Flavonoids That Combats Oxidative Stress and Promotes Skin Health.
AGSE:一种富含 PP2A 激活类黄酮的新型葡萄籽提取物,可对抗氧化应激并促进皮肤健康
阅读:7
作者:Huber Kristen L, Fernández José R, Webb Corey, Rouzard Karl, Healy Jason, Tamura Masanori, Stock Jeffry B, Stock Maxwell, Pérez Eduardo
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2021 | 起止号: | 2021 Oct 20; 26(21):6351 |
| doi: | 10.3390/molecules26216351 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
