PepT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-{gamma}-D-Glu-meso-DAP in intestinal epithelial cells.

PepT1介导促炎细菌三肽L-Ala-γ-D-Glu-meso-DAP在肠上皮细胞中的转运

阅读:5
作者:Dalmasso Guillaume, Nguyen Hang Thi Thu, Charrier-Hisamuddin Laetitia, Yan Yutao, Laroui Hamed, Demoulin Benjamin, Sitaraman Shanthi V, Merlin Didier
PepT1 is a di/tripeptide transporter highly expressed in the small intestine, but poorly or not expressed in the colon. However, during chronic inflammation, such as inflammatory bowel disease, PepT1 expression is induced in the colon. Commensal bacteria that colonize the human colon produce a large amount of di/tripeptides. To date, two bacterial peptides (N-formylmethionyl-leucyl-phenylalanine and muramyl dipeptide) have been identified as substrates of PepT1. We hypothesized that the proinflammatory tripeptide l-Ala-gamma-d-Glu-meso-DAP (Tri-DAP), a breakdown product of bacterial peptidoglycan, is transported into intestinal epithelial cells via PepT1. We found that uptake of glycine-sarcosine, a specific substrate of PepT1, in intestinal epithelial Caco2-BBE cells was inhibited by Tri-DAP in a dose-dependent manner. Tri-DAP induced activation of NF-kappaB and MAP kinases, consequently leading to production of the proinflammatory cytokine interleukin-8. Tri-DAP-induced inflammatory response in Caco2-BBE cells was significantly suppressed by silencing of PepT1 expression by using PepT1-shRNAs in a tetracycline-regulated expression (Tet-off) system. Colonic epithelial HT29-Cl.19A cells, which do not express PepT1 under basal condition, were mostly insensitive to Tri-DAP-induced inflammation. However, HT29-Cl.19A cells exhibited proinflammatory response to Tri-DAP upon stable transfection with a plasmid encoding PepT1. Accordingly, Tri-DAP significantly increased keratinocyte-derived chemokine production in colonic tissues from transgenic mice expressing PepT1 in intestinal epithelial cells. Finally, Tri-DAP induced a significant drop in intracellular pH in intestinal epithelial cells expressing PepT1, but not in cells that did not express PepT1. Our data collectively support the classification of Tri-DAP as a novel substrate of PepT1. Given that PepT1 is highly expressed in the colon during inflammation, PepT1-mediated Tri-DAP transport may occur more effectively during such conditions, further contributing to intestinal inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。