Metabolic characterisation of THP-1 macrophage polarisation using LC-MS-based metabolite profiling.

利用基于 LC-MS 的代谢物分析对 THP-1 巨噬细胞极化的代谢特征进行表征

阅读:6
作者:Abuawad Alaa, Mbadugha Chidimma, Ghaemmaghami Amir M, Kim Dong-Hyun
INTRODUCTION: Macrophages constitute a heterogeneous population of functionally distinct cells involved in several physiological and pathological processes. They display remarkable plasticity by changing their phenotype and function in response to environmental cues representing a spectrum of different functional phenotypes. The so-called M1 and M2 macrophages are often considered as representative of pro- and anti-inflammatory ends of such spectrum. Metabolomics approach is a powerful tool providing important chemical information about the cellular phenotype of living systems, and the changes in their metabolic pathways in response to various perturbations. OBJECTIVES: This study aimed to characterise M1 and M2 phenotypes in THP-1 macrophages in order to identify characteristic metabolites of each polarisation state. METHODS: Herein, untargeted liquid chromatography (LC)-mass spectrometry (MS)-based metabolite profiling was applied to characterise the metabolic profile of M1-like and M2-like THP-1 macrophages. RESULTS: The results showed that M1 and M2 macrophages have distinct metabolic profiles. Sphingolipid and pyrimidine metabolism was significantly changed in M1 macrophages whereas arginine, proline, alanine, aspartate and glutamate metabolism was significantly altered in M2 macrophages. CONCLUSION: This study represents successful application of LC-MS metabolomics approach to characterise M1 and M2 macrophages providing functional readouts that show unique metabolic signature for each phenotype. These data could contribute to a better understanding of M1 and M2 functional properties and could pave the way for developing new therapeutics targeting different immune diseases.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。