Background/Objectives: Asthma, a chronic airway inflammatory disease characterized by bronchial narrowing and caused by an inflammatory response, results in airway obstruction and hyperresponsiveness. Stachydrine (STA), an abundant metabolite found in plants and humans, is recognized for its bioactivity in treating fibrosis, cancer, and inflammation. However, its effects on asthma have not been fully elucidated. We aimed to investigate the ameliorating effects of STA on chronic airway inflammation caused by Dermatophagoides pteronyssinus (house dust mite, HDM). Methods: We used a murine model of HDM-induced airway inflammation to assess the change in metabolite profile by chronic airway inflammation. The mice were challenged with HDM (35 challenges in total) for up to 12 weeks. Serum metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry. Results: HDM exposure increased airway hypersensitivity, immune cell infiltration, cytokine production, goblet cell hyperplasia, collagen deposition, and alpha smooth muscle actin and fibronectin expression. Serum metabolite analysis revealed that STA levels were lower in the mice with HDM-induced chronic inflammation than in the controls. In vitro analyses demonstrated that HDM sensitization increased cytokine production (interleukin [IL]-6 and IL-8) and extracellular signal-regulated kinase (ERK) activity. However, STA treatment reduced HDM-induced IL-6 and IL-8 production and ERK activity. Co-treatment with a mitogen-activated protein kinase (MAPK) inhibitor and STA resulted in a more pronounced reduction in cytokine production and MAPK activity. Conclusions: These findings suggest that STA, particularly when used in combination with a MAPK inhibitor, effectively suppresses airway inflammation through ERK pathway inhibition, making it a potential therapeutic agent for asthma treatment.
Stachydrine Showing Metabolic Changes in Mice Exposed to House Dust Mites Ameliorates Allergen-Induced Inflammation.
水苏碱可改善暴露于屋尘螨的小鼠的代谢变化,从而减轻过敏原引起的炎症
阅读:16
作者:Do Ji-Hye, Hong Jung Yeon, Jang Ji-Hye, Jeong Kyu-Tae, Kim Seung Hyun, Lee Hye-Ja
| 期刊: | Nutrients | 影响因子: | 5.000 |
| 时间: | 2025 | 起止号: | 2025 Jun 16; 17(12):2015 |
| doi: | 10.3390/nu17122015 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
