BACKGROUND: Obesity is a growing global epidemic associated with changes in the gut microenvironment and metabolic endotoxemia, which can exacerbate metabolic and inflammatory processes. Citral (CT), a monoterpene present in essential oils, has been investigated for its anti-inflammatory, antioxidant, and immunomodulatory properties. However, its role in modulating the gut axis during metabolic and inflammatory alterations in obesity remains unknown. In this study, we investigated the effects of CT on intestinal and metabolic impairment induced by lipopolysaccharide (LPS) and high-fat diet (HFD) in in vitro and in vivo models. METHODS: Male C57BL/6J mice were fed a standard diet and HFD for 17 weeks, with daily oral administration of CT treatment (25, 100, or 300 mg/kg) or vehicle. Morphological and histological parameters, lipid profiles, adipose index, cytokine levels, and colonic gene expression were determined. In vitro, murine rectal carcinoma (CMT-93) cells were stimulated with LPS (10 μg/mL) to assess tight junction and inflammatory protein expression. RESULTS: CT treatment showed anti-obesity activity against HFD-induced body mass gain in mice, which was attributed to a significant reduction in body fat, glycemia, and cholesterol levels. Systemic inflammation during obesity also decreased after CT treatment, with a significant reduction in serum levels of endotoxin, interleukin-1β, and tumor necrosis factor-α. Additionally, CT stimulation reduced inducible nitric oxide synthase expression and maintained ZO-1 levels in LPS-stimulated CMT-93 cells. CONCLUSION: CT has anti-obesogenic, anti-inflammatory, and anti-hyperlipidemic properties mediated by its protective effects on the intestinal epithelium in obesity. Thus, our results highlight the promising preclinical results of CT treatment as a protective agent against the detrimental effects of HFD and LPS in mice.
Citral protects against metabolic endotoxemia, and systemic disorders caused by high-fat diet-induced obesity via intestinal modulation.
柠檬醛通过肠道调节,防止代谢性内毒素血症和高脂饮食引起的肥胖所导致的全身性疾病
阅读:3
作者:EmÃlio-Silva Maycon Tavares, Rodrigues Vinicius Peixoto, Fioravanti Mariana Moraes, Ruiz-Malagon Antonio Jesús, Naia Fioretto Matheus, Raimundo Priscila Romano, Ohara Rie, Assunção Renata, Bueno Gabriela, Dario Felipe Lima, Justulin Luis Antonio Jr, RodrÃguez-Nogales Alba, da Rocha Lucia Regina Machado, Gálvez Júlio, Hiruma-Lima Clélia Akiko
| 期刊: | Frontiers in Pharmacology | 影响因子: | 4.800 |
| 时间: | 2025 | 起止号: | 2025 Apr 7; 16:1567217 |
| doi: | 10.3389/fphar.2025.1567217 | 研究方向: | 代谢 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
