Human Adventitial Fibroblast Phenotype Depends on the Progression of Changes in Substrate Stiffness.

人类外膜成纤维细胞表型取决于基质硬度变化的进程

阅读:7
作者:Scott Rebecca A, Robinson Karyn G, Kiick Kristi L, Akins Robert E
Adventitial fibroblasts (AFs) are major contributors to vascular remodeling and maladaptive cascades associated with arterial disease, where AFs both contribute to and respond to alterations in their surrounding matrix. The relationships between matrix modulus and human aortic AF (AoAF) function are investigated using poly(ethylene glycol)-based hydrogels designed with matrix metalloproteinase (MMP)-sensitive and integrin-binding peptides. Initial equilibrium shear storage moduli for the substrates examined are 0.33, 1.42, and 2.90 kPa; after 42 days of culture, all hydrogels exhibit similar storage moduli (0.3-0.7 kPa) regardless of initial modulus, with encapsulated AoAFs spreading and proliferating. In 10 and 7.5 wt% hydrogels, modulus decreases monotonically throughout culture; however, in 5 wt% hydrogels, modulus increases after an initial 7 days of culture, accompanied by an increase in myofibroblast transdifferentiation and expression of collagen I and III through day 28. Thereafter, significant reductions in both collagens occur, with increased MMP-9 and decreased tissue inhibitor of metalloproteinase-1/-2 production. Releasing cytoskeletal tension or inhibiting cellular protein secretion in 5 wt% hydrogels block the stiffening of the polymer matrix. Results indicate that encapsulated AoAFs initiate cell-mediated matrix remodeling and demonstrate the utility of dynamic 3D systems to elucidate the complex interactions between cell behavior and substrate properties.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。