Alpha-Lipoic Acid Reduces Neuroinflammation and Oxidative Stress Induced by Dapsone in an Animal Model.

α-硫辛酸可减轻动物模型中氨苯砜引起的神经炎症和氧化应激

阅读:3
作者:Gomes Bruno Alexandre Quadros, Santos Savio Monteiro Dos, Gato Lucas da Silva, Espíndola Kaio Murilo Monteiro, Silva Rana Karen Mesquita da, Davis Kelly, Navegantes-Lima Kely Campos, Burbano Rommel Mario Rodriguez, Romao Pedro Roosevelt Torres, Coleman Michael D, Monteiro Marta Chagas
Background/Objectives: Chronic treatment with dapsone (DDS) has been linked to adverse reactions involving all organ systems, such as dapsone hypersensitivity syndrome, methemoglobinemia and hemolytic anemia, besides neuroinflammation and neurodegeneration due to iron accumulation and oxidative stress. These effects probably occur due to the presence of its toxic metabolite DDS-NOH, which can generate reactive oxygen species (ROS) and iron overload. In this sense, antioxidant compounds with chelating properties, such as alpha-lipoic acid (ALA), may be an interesting adjuvant therapy strategy in treating or preventing these effects. Thus, the aim of this study was to evaluate the effects of ALA on oxidative and neuroinflammatory changes caused by DDS treatment in the prefrontal cortex and hippocampus of mice. Materials and Methods:Mus musculus male mice that were pre-treated with DDS (40 mg/kg) and post-treated with ALA (25 mg/kg) underwent analyses for oxidative stress, antioxidant capacity, cytokine expression and microglial/astrocytic activity. Results: DDS did not activate macrophages/microglia or astrocytes in the prefrontal cortex but induced their activation in the hippocampus. ALA stimulated a protective microglial profile and reduced astrocyte reactivity, especially in the hippocampus. DDS increased the pro-inflammatory cytokine IL-1β and reduced brain-derived neurotrophic factor (BDNF), effects reversed by ALA. DDS also reduced antioxidant capacity (TEAC, GSH, SOD, CAT) and increased oxidative damage (lipid peroxidation, iron accumulation), while ALA restored antioxidant levels and reduced oxidative stress. Conclusions: ALA was able to reduce the effects of DDS, such as reducing microglial and astrocytic activation, as well as to decrease the levels of pro-inflammatory cytokines and increase BDNF, in addition to increasing antioxidant capacity and reducing oxidative damage caused by iron accumulation. Therefore, ALA is considered a useful and promising therapeutic alternative for the treatment of diseases related to oxidative stress and neuroinflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。