Alzheimer's disease risk gene BIN1 induces Tau-dependent network hyperexcitability

阿尔茨海默病风险基因 BIN1 诱导 Tau 依赖性网络过度兴奋

阅读:11
作者:Yuliya Voskobiynyk #, Jonathan R Roth #, J Nicholas Cochran, Travis Rush, Nancy Vn Carullo, Jacob S Mesina, Mohammad Waqas, Rachael M Vollmer, Jeremy J Day, Lori L McMahon, Erik D Roberson

Abstract

Genome-wide association studies identified the BIN1 locus as a leading modulator of genetic risk in Alzheimer's disease (AD). One limitation in understanding BIN1's contribution to AD is its unknown function in the brain. AD-associated BIN1 variants are generally noncoding and likely change expression. Here, we determined the effects of increasing expression of the major neuronal isoform of human BIN1 in cultured rat hippocampal neurons. Higher BIN1 induced network hyperexcitability on multielectrode arrays, increased frequency of synaptic transmission, and elevated calcium transients, indicating that increasing BIN1 drives greater neuronal activity. In exploring the mechanism of these effects on neuronal physiology, we found that BIN1 interacted with L-type voltage-gated calcium channels (LVGCCs) and that BIN1-LVGCC interactions were modulated by Tau in rat hippocampal neurons and mouse brain. Finally, Tau reduction prevented BIN1-induced network hyperexcitability. These data shed light on BIN1's neuronal function and suggest that it may contribute to Tau-dependent hyperexcitability in AD.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。