Chronic pancreatitis (CP) is a fibro-inflammatory disease of the pancreas with no specific cure. Research highlighting the pathogenesis and especially the therapeutic aspect remains limited. Aberrant activation of developmental pathways in adults has been implicated in several diseases. Hedgehog pathway is a notable embryonic signaling pathway, known to promote fibrosis of various organs when overactivated. The aim of this study is to explore the role of the hedgehog pathway in the progression of CP and evaluate its inhibition as a novel therapeutic strategy against CP. CP was induced in mice by repeated injections of l-arginine or caerulein in two separate models. Mice were administered with the FDA-approved pharmacological hedgehog pathway inhibitor, vismodegib during or after establishing the disease condition to inhibit hedgehog signaling. Various parameters of CP were analyzed to determine the effect of hedgehog pathway inhibition on the severity and progression of the disease. Our study shows that hedgehog signaling was overactivated during CP and its inhibition was effective in improving the histopathological parameters associated with CP. Vismodegib administration not only halted the progression of CP but was also able to resolve already-established fibrosis. In addition, inhibition of hedgehog signaling resulted in the reversal of pancreatic stellate cell activation ex vivo. Findings from our study justify conducting clinical trials using vismodegib against CP and, thus, could lead to the development of a novel therapeutic strategy for the treatment of CP.NEW & NOTEWORTHY Hedgehog signaling is activated in human and experimental models of CP. Inhibition of hedgehog signaling using an FDA-approved inhibitor, vismodegib, leads to the resolution of fibrosis and improves CP. This study has immense and immediate translational benefits.
Inhibition of hedgehog signaling ameliorates severity of chronic pancreatitis in experimental mouse models.
抑制 Hedgehog 信号通路可减轻实验小鼠模型中慢性胰腺炎的严重程度
阅读:12
作者:Iyer Srikanth, Tarique Mohammad, Sahay Preeti, Giri Sagnik, Bava Ejas P, Guan JiaShiung, Jain Tejeshwar, Vaish Utpreksha, Jin Xiuwen, Moon Sabrina, Crossman David K, Dudeja Vikas
| 期刊: | American Journal of Physiology-Gastrointestinal and Liver Physiology | 影响因子: | 3.300 |
| 时间: | 2025 | 起止号: | 2025 Apr 1; 328(4):G342-G363 |
| doi: | 10.1152/ajpgi.00212.2024 | 种属: | Mouse |
| 研究方向: | 信号转导 | 疾病类型: | 胰腺炎 |
| 信号通路: | Hedgehog | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
