Astrocytic FABP5 mediates retrograde endocannabinoid transport at central synapses.

星形胶质细胞 FABP5 介导中枢突触的逆行内源性大麻素运输

阅读:9
作者:Oubraim Saida, Fauzan Mohammad, Studholme Keith, Gordon Chris, Glaser Sherrye T, Shen Roh-Yu, Ojima Iwao, Kaczocha Martin, Haj-Dahmane Samir
Endocannabinoids (eCBs) regulate synaptic function via cannabinoid receptors. While eCB signaling is well understood, the mechanisms underlying eCB synaptic transport are poorly characterized. Using 2-arachidonoylglycerol (2-AG)-mediated depolarization-induced suppression of inhibition (DSI) in the hippocampus as a readout of retrograde eCB signaling, we demonstrate that the deletion of fatty acid binding protein 5 (FABP5) impairs DSI. In FABP5 KO mice, DSI was rescued by re-expressing wild-type FABP5 but not an FABP5 mutant that does not bind 2-AG. Importantly, the deletion of astrocytic FABP5 blunted DSI, which was rescued by its re-expression in the astrocytes of FABP5 KO mice. Neuronal FABP5 was dispensable for 2-AG signaling. DSI was also rescued by expressing a secreted FABP5 variant but not by FABP7, an astrocytic FABP that does not undergo secretion. Our results demonstrate that extracellular FABP5 of astrocytic origin controls 2-AG transport and that FABP5 is adapted to coordinate intracellular and synaptic eCB transport.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。