The frequency of micronucleated reticulocytes (MN-RETs) in the bone marrow or peripheral blood is a sensitive indicator of cytogenetic damage. While the kinetics of MN-RET induction in rodent models following irradiation has been investigated and reported, information about MN-RET induction of human bone marrow after radiation exposure is sparse. In this report, we describe a human long-term bone marrow culture (LTBMC), established in three-dimensional (3D) bioreactors, which sustains long-term erythropoiesis. Using this system, we measured the kinetics of human bone marrow red blood cell (RBC) and reticulocyte (RET) production, as well as the kinetics of human MN-RET induction following radiation exposure up to 6Gy. Human bone marrow established in the 3D bioreactor demonstrated an average percentage of RBCs among total viable cells peaking at 21% on day 21. The average percentage of RETs among total viable cells reached a maximum of 11% on day 14, and remained above 5% by day 28, suggesting that terminal erythroid differentiation was still active. Time- and dose-dependent induction of MN-RET by gamma radiation was observed in the human 3D LTBMC, with peak values occurring at approximately 3 days following 1Gy irradiation. A trend towards delayed peak to 3-5 days post-radiation was observed with radiation doses â¥2Gy. Our data reveal valuable information on the kinetics of radiation-induced MN-RET of human bone marrow cultured in the 3D bioreactor, a synthetic bioculture system, and suggest that this model may serve as a promising tool for studying MN-RET formation in human bone marrow, thereby providing opportunities to study bone marrow genotoxicity testing, mitigating agent effects, and other conditions that are not ordinarily feasible to experimental manipulation in vivo.
Response kinetics of radiation-induced micronucleated reticulocytes in human bone marrow culture.
辐射诱导的微核网织红细胞在人骨髓培养中的反应动力学
阅读:5
作者:Sun Hongliang, Tsai Ying, Nowak Irena, Dertinger Stephen D, Wu J H David, Chen Yuhchyau
| 期刊: | Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis | 影响因子: | 1.900 |
| 时间: | 2011 | 起止号: | 2011 Jan 10; 718(1-2):38-43 |
| doi: | 10.1016/j.mrgentox.2010.10.007 | 种属: | Human |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
